mu-Opioid receptor agonists differentially regulate the expression of miR-190 and NeuroD.
نویسندگان
چکیده
The agonists of mu-opioid receptor (OPRM1) induce extracellular signal-regulated kinase (ERK) phosphorylation through different pathways: morphine uses the protein kinase C (PKC)-pathway, whereas fentanyl functions in a beta-arrestin2-dependent manner. In addition, the two pathways result in the different cellular location of phosphorylated ERK and the activation of different sets of transcriptional factors. In the current study, the influence of the two pathways on the expression of microRNAs (miRNAs) was investigated. After treating the primary culture of rat hippocampal neurons and the mouse hippocampi with morphine or fentanyl for 3 days, seven miRNAs regulated by one or two of the agonists were identified. One of the identified miRNAs, miR-190, was down-regulated by fentanyl but not by morphine. This down-regulation was attenuated by 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126), which blocks the phosphorylation of ERK. When fentanyl-induced but not morphine-induced ERK phosphorylation was blocked in the primary cultures from beta-arrestin2(-/-) mouse, fentanyl did not decrease the expression of miR-190. However, a PKC inhibitor that blocked morphine-induced ERK phosphorylation specifically had no effect on the miR-190 down-regulation. Therefore the decrease in miR-190 expression resulted from the agonist-selective ERK phosphorylation. In addition, the expressional changes in one of the miR-190 targets, neurogenic differentiation 1 (NeuroD), correlated with those in miR-190 expression, suggesting the OPRM1 could regulate the NeuroD pathways via the control of miR-190 expression.
منابع مشابه
Modulations of NeuroD activity contribute to the differential effects of morphine and fentanyl on dendritic spine stability.
The cellular level of neurogenic differentiation 1 (NeuroD) is modulated differentially by mu-opioid receptor agonists; fentanyl increases NeuroD level by reducing the amount of microRNA-190 (miR-190), an inhibitor of NeuroD expression, whereas morphine does not alter NeuroD level. In the current study, NeuroD activity was demonstrated to be also under agonist-dependent regulation. After 3 d of...
متن کاملMorphine and microRNA Activity: Is There a Relation with Addiction?
When we talk about drug addiction, we are really dealing with an extremely complex system in which there still remain many unknowns and where many empty spaces or missing links are still present. Recent studies have identified changes in the expression profiles of several specific miRNAs which affect the interactions between these molecules and their targets in various illnesses, including addi...
متن کاملmiR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with µ Opioid Receptor
The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, th...
متن کاملMu Opioid Receptor Gene: New Point Mutations in Opioid Addicts
Introduction: Association between single-nucleotide polymorphisms (SNPs) in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction. Methods: 79 opioid-dependent subjects (55 males, 24...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2010